July 29, 2018
Optical marker-based motion capture is the dominant way for obtaining high-fidelity human body animation for special effects, movies, and video games. However, motion capture has seen limited application to the human hand due to the difficulty of automatically identifying (or labeling) identical markers on self-similar fingers. We propose a technique that frames the labeling problem as a keypoint regression problem conducive to a solution using convolutional neural networks. We demonstrate robustness of our labeling solution to occlusion, ghost markers, hand shape, and even motions involving two hands or handheld objects. Our technique is equally applicable to sparse or dense marker sets and can run in real-time to support interaction prototyping with high-fidelity hand tracking and hand presence in virtual reality.
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
November 06, 2022
Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan
November 06, 2022
October 25, 2022
Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi
October 25, 2022
October 22, 2022
Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang
October 22, 2022
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Foundational models
Latest news
Foundational models