COMPUTER VISION

CORE MACHINE LEARNING

Online Backfilling with No Regret for Large-Scale Image Retrieval

January 10, 2023

Abstract

Backfilling is the process of re-extracting all gallery embeddings from upgraded models in image retrieval systems. It inevitably requires a prohibitively large amount of computational cost and even entails the downtime of the service. Although backward-compatible learning sidesteps this challenge by tackling query-side representations, this leads to suboptimal solutions in principle because gallery embeddings cannot benefit from model upgrades. We address this dilemma by introducing an online backfilling algorithm, which enables us to achieve a progressive performance improvement during the backfilling process while not sacrificing the final performance of new model after the com- pletion of backfilling. To this end, we first propose a simple distance rank merge technique for online backfilling. Then, we incorporate a reverse transformation module for more effective and efficient merging, which is further enhanced by adopting a metric-compatible contrastive learning approach. These two components help to make the distances of old and new models compatible, resulting in desirable merge results during backfilling with no extra computational overhead. Extensive experiments show the effectiveness of our framework on four standard benchmarks in various settings.

Download the Paper

AUTHORS

Written by

Gokhan Uzunbas

Joena Zhang

Sara Cao

Ser-Nam Lim

Taipeng Tian

Bohyung Han

Seonguk Seo

Publisher

Arxiv

Research Topics

Computer Vision

Core Machine Learning

Related Publications

February 15, 2024

CORE MACHINE LEARNING

Revisiting Feature Prediction for Learning Visual Representations from Video

Adrien Bardes, Quentin Garrido, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido Assran, Nicolas Ballas, Jean Ponce

February 15, 2024

February 13, 2024

GRAPHICS

COMPUTER VISION

IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni, Filippos Kokkinos

February 13, 2024

January 25, 2024

COMPUTER VISION

LRR: Language-Driven Resamplable Continuous Representation against Adversarial Tracking Attacks

Felix Xu, Di Lin, Jianjun Zhao, Jianlang Chen, Lei Ma, Qing Guo, Wei Feng, Xuhong Ren

January 25, 2024

January 09, 2024

CORE MACHINE LEARNING

Accelerating a Triton Fused Kernel for W4A16 Quantized Inference with SplitK Work Decomposition

Less Wright, Adnan Hoque

January 09, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.