RESEARCH

NLP

One-Shot Unsupervised Cross Domain Translation

December 02, 2018

Abstract

Given a single image x from domain A and a set of images from domain B, our task is to generate the analogous of x in B. We argue that this task could be a key AI capability that underlines the ability of cognitive agents to act in the world and present empirical evidence that the existing unsupervised domain translation methods fail on this task. Our method follows a two step process. First, a variational autoencoder for domain B is trained. Then, given the new sample x, we create a variational autoencoder for domain A by adapting the layers that are close to the image in order to directly fit x, and only indirectly adapt the other layers. Our experiments indicate that the new method does as well, when trained on one sample x, as the existing domain transfer methods, when these enjoy a multitude of training samples from domain A. Our code is made publicly available at https://github.com/sagiebenaim/OneShotTranslation.

Download the Paper

AUTHORS

Written by

Lior Wolf

Sagie Benaim

Publisher

NIPS

Related Publications

September 05, 2024

CONVERSATIONAL AI

NLP

Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma

September 05, 2024

August 20, 2024

CONVERSATIONAL AI

NLP

Lumos : Empowering Multimodal LLMs with Scene Text Recognition

Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar

August 20, 2024

August 11, 2024

NLP

LM Transparency Tool: Interactive Tool for Analyzing Transformer Language Models

Igor Tufanov, Karen Hambardzumyan, Javier Ferrando, Lena Voita

August 11, 2024

August 11, 2024

NLP

MuTox: Universal MUltilingual Audio-based TOXicity Dataset and Zero-shot Detector

Marta R. Costa-jussa, Mariano Coria Meglioli, Pierre Andrews, David Dale, Kae Hansanti, Elahe Kalbassi, Christophe Ropers, Carleigh Wood

August 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.