November 08, 2020
In the context of learning to map an input $I$ to a function $h_I:\mathcal{X}\to \mathbb{R}$, two alternative methods are compared: (i) an embedding-based method, which learns a fixed function in which $I$ is encoded as a conditioning signal $e(I)$ and the learned function takes the form $h_I(x) = q(x,e(I))$, and (ii) hypernetworks, in which the weights $\theta_I$ of the function $h_I(x) = g(x;\theta_I)$ are given by a hypernetwork $f$ as $\theta_I=f(I)$. In this paper, we define the property of modularity as the ability to effectively learn a different function for each input instance $I$. For this purpose, we adopt an expressivity perspective of this property and extend the theory of~\cite{devore} and provide a lower bound on the complexity (number of trainable parameters) of neural networks as function approximators, by eliminating the requirements for the approximation method to be robust. Our results are then used to compare the complexities of $q$ and $g$, showing that under certain conditions and when letting the functions $e$ and $f$ be as large as we wish, $g$ can be smaller than $q$ by orders of magnitude. This sheds light on the modularity of hypernetworks in comparison with the embedding-based method. Besides, we show that for a structured target function, the overall number of trainable parameters in a hypernetwork is smaller by orders of magnitude than the number of trainable parameters of a standard neural network and an embedding method.
Written by
Lior Wolf
Tomer Galanti
Publisher
NeurIPS
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
April 17, 2025
Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier
April 17, 2025
April 14, 2025
Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu
April 14, 2025
March 24, 2025
Wassim (Wes) Bouaziz, Nicolas Usunier, El Mahdi El Mhamdi
March 24, 2025
Foundational models
Our approach
Latest news
Foundational models