March 01, 2021
Model-based Reinforcement Learning (MBRL) is a promising framework for learning control in a data-efficient manner. MBRL algorithms can be fairly complex due to the separate dynamics modeling and the subsequent planning algorithm, and as a result, they often possess tens of hyperparameters and architectural choices. For this reason, MBRL typically requires significant human expertise before it can be applied to new problems and domains. To alleviate this problem, we propose to use automatic hyperparameter optimization (HPO). We demonstrate that this problem can be tackled effectively with automated HPO, which we demonstrate to yield significantly improved performance compared to human experts. In addition, we show that tuning of several MBRL hyperparameters dynamically, i.e. during the training itself, further improves the performance compared to using static hyperparameters which are kept fixed for the whole training. Finally, our experiments provide valuable insights into the effects of several hyperparameters, such as plan horizon or learning rate and their influence on the stability of training and resulting rewards.
Written by
Baohe Zhang
Raghu Rajan
Luis Pineda
Nathan Lambert
André Biedenkapp
Kurtland Chua
Frank Hutter
Roberto Calandra
Publisher
AISTATS
Research Topics
December 12, 2024
Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen Xu, Alessandro Lazaric, Matteo Pirotta
December 12, 2024
August 16, 2024
Zhihan Xiong, Maryam Fazel, Lin Xiao
August 16, 2024
July 01, 2024
Andrei Lupu, Chris Lu, Robert Lange, Jakob Foerster
July 01, 2024
May 06, 2024
Haoyue Tang, Tian Xie
May 06, 2024
Foundational models
Latest news
Foundational models