RESEARCH

NLP

On the Distribution of Deep Clausal Embeddings:A Large Cross-linguistic Study

July 26, 2019

Abstract

Embedding a clause inside another (“the girl[who likes cars [that run fast]] has arrived”) is a fundamental resource that has been argued to be a key driver of linguistic expressiveness. As such, it plays a central role in fundamental debates on what makes human language unique, and how they might have evolved.Empirical evidence on the prevalence and the limits of embeddings has however been based on either laboratory setups or corpus data of relatively limited size. We introduce here a collection of large, dependency-parsed written corpora in17languages, that allow us, for the first time, to capture clausal embedding through dependency graphs and assess their distribution. Our results indicate that there is no evidence for hard constraint son embedding depth: the tail of depth distributions is heavy. Moreover, although deeply embedded clauses tend to be shorter, suggesting processing load issues, complex sentences with many embeddings do not display a bias towards less deep embeddings. Taken together,the results suggest that deep embeddings are not disfavored in written language. More generally, our study illustrates how resources and methods from latest-generation big-data Nolan provide new perspectives on fundamental questions in theoretical linguistics.

Download the Paper

AUTHORS

Written by

Marco Baroni

Ryan Cotterell

Balthasar Bickel

Damian Blasi

Lawrence Wolf-Sonkin

Sabine Stoll

Publisher

ACL

Related Publications

February 07, 2025

NLP

BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation

The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates

February 07, 2025

February 07, 2025

RESEARCH

SPEECH & AUDIO

Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound

Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu

February 07, 2025

February 06, 2025

RESEARCH

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

RESEARCH

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.