COMPUTER VISION

Object Reprojection Error (ORE): Camera pose benchmarks from lightweight tracking annotations

December 10, 2023

Abstract

3D spatial understanding is highly valuable in the context of semantic modeling of environments, agents, and their relationships. Semantic modeling approaches employed on monocular video often ingest outputs from off-the-shelf SLAM/SfM pipelines, which are anecdotally observed to perform poorly or fail completely on some fraction of the videos of interest. These target videos may vary widely in complexity of scenes, activities, camera trajectory, etc. Unfortunately, such semantically-rich video data often comes with no ground-truth 3D information, and in practice it is prohibitively costly or impossible to obtain ground truth reconstructions or camera pose post-hoc. This paper proposes a novel evaluation protocol, Object Reprojection Error (ORE) to benchmark camera trajectories; ORE computes reprojection error for static objects within the video and requires only lightweight object tracklet annotations. These annotations are easy to gather on new or existing video, enabling ORE to be calculated on essentially arbitrary datasets. We show that ORE maintains high rank correlation with standard metrics based on groundtruth. Leveraging ORE, we source videos and annotations from Ego4D-EgoTracks, resulting in EgoStatic, a large-scale diverse dataset for evaluating camera trajectories in-the-wild.

Download the Paper

AUTHORS

Written by

Xingyu Chen

Weiyao Wang

Hao Tang

Matt Feiszli

Publisher

NeurIPS Dataset and Benhmark

Research Topics

Computer Vision

Related Publications

December 12, 2024

COMPUTER VISION

EvalGIM: A Library for Evaluating Generative Image Models

Melissa Hall, Oscar MaƱas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi, Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, Adriana Romero Soriano

December 12, 2024

December 11, 2024

COMPUTER VISION

Video Seal: Open and Efficient Video Watermarking

Pierre Fernandez, Hady Elsahar, Zeki Yalniz, Alexandre Mourachko

December 11, 2024

December 11, 2024

NLP

COMPUTER VISION

Meta CLIP 1.2

Hu Xu, Bernie Huang, Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Scott Yih, Philippe Brunet, Kim Hazelwood, Ramya Raghavendra, Daniel Li (FAIR), Saining Xie, Christoph Feichtenhofer

December 11, 2024

December 11, 2024

COMPUTER VISION

Measuring Deja Vu Memorization Efficiently

Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri

December 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.