COMPUTER VISION

Object Reprojection Error (ORE): Camera pose benchmarks from lightweight tracking annotations

December 10, 2023

Abstract

3D spatial understanding is highly valuable in the context of semantic modeling of environments, agents, and their relationships. Semantic modeling approaches employed on monocular video often ingest outputs from off-the-shelf SLAM/SfM pipelines, which are anecdotally observed to perform poorly or fail completely on some fraction of the videos of interest. These target videos may vary widely in complexity of scenes, activities, camera trajectory, etc. Unfortunately, such semantically-rich video data often comes with no ground-truth 3D information, and in practice it is prohibitively costly or impossible to obtain ground truth reconstructions or camera pose post-hoc. This paper proposes a novel evaluation protocol, Object Reprojection Error (ORE) to benchmark camera trajectories; ORE computes reprojection error for static objects within the video and requires only lightweight object tracklet annotations. These annotations are easy to gather on new or existing video, enabling ORE to be calculated on essentially arbitrary datasets. We show that ORE maintains high rank correlation with standard metrics based on groundtruth. Leveraging ORE, we source videos and annotations from Ego4D-EgoTracks, resulting in EgoStatic, a large-scale diverse dataset for evaluating camera trajectories in-the-wild.

Download the Paper

AUTHORS

Written by

Xingyu Chen

Weiyao Wang

Hao Tang

Matt Feiszli

Publisher

NeurIPS Dataset and Benhmark

Research Topics

Computer Vision

Related Publications

November 20, 2024

CONVERSATIONAL AI

COMPUTER VISION

Llama Guard 3 Vision: Safeguarding Human-AI Image Understanding Conversations

Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti

November 20, 2024

November 11, 2024

COMPUTER VISION

HOI-Swap: Swapping Objects in Videos with Hand-Object Interaction Awareness

Sherry Xue, Romy Luo, Changan Chen, Kristen Grauman

November 11, 2024

October 31, 2024

HUMAN & MACHINE INTELLIGENCE

ROBOTICS

Digitizing Touch with an Artificial Multimodal Fingertip

Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra

October 31, 2024

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.