Research

Speech & Audio

Non-Adversarial Mapping with VAEs

December 4, 2018

Abstract

The study of cross-domain mapping without supervision has recently attracted much attention. Much of the recent progress was enabled by the use of adversarial training as well as cycle constraints. The practical difficulty of adversarial training motivates research into non-adversarial methods. In a recent paper, it was shown that cross-domain mapping is possible without the use of cycles or GANs. Although promising, this approach suffers from several drawbacks including costly inference and an optimization variable for every training example preventing the method from using large training sets. We present an alternative approach which is able to achieve non-adversarial mapping using a novel form of Variational Auto-Encoder. Our method is much faster at inference time, is able to leverage large datasets and has a simple interpretation.

Download the Paper

Related Publications

November 19, 2020

Speech & Audio

Generating Fact Checking Briefs

Angela Fan, Aleksandra Piktus, Antoine Bordes, Fabio Petroni, Guillaume Wenzek, Marzieh Saeidi, Sebastian Riedel, Andreas Vlachos

November 19, 2020

November 09, 2020

Speech & Audio

Multilingual AMR-to-Text Generation

Angela Fan

November 09, 2020

October 26, 2020

Speech & Audio

Deep Multilingual Transformer with Latent Depth

Xian Li, Asa Cooper Stickland, Xiang Kong, Yuqing Tang

October 26, 2020

October 25, 2020

Speech & Audio

Hide and Speak: Towards Deep Neural Networks for Speech Steganography

Yossef Mordechay Adi, Bhiksha Raj, Felix Kreuk, Joseph Keshet, Rita Singh

October 25, 2020

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

April 30, 2018

Speech & Audio

VoiceLoop: Voice Fitting and Synthesis via a Phonolgoical Loop | Facebook AI Research

Yaniv Taigman, Lior Wolf, Adam Polyak, Eliya Nachmani

April 30, 2018

July 11, 2018

Speech & Audio

Fitting New Speakers Based on a Short Untranscribed Sample | Facebook AI Research

Eliya Nachmani, Adam Polyak, Yaniv Taigman, Lior Wolf

July 11, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.