December 4, 2018
The study of cross-domain mapping without supervision has recently attracted much attention. Much of the recent progress was enabled by the use of adversarial training as well as cycle constraints. The practical difficulty of adversarial training motivates research into non-adversarial methods. In a recent paper, it was shown that cross-domain mapping is possible without the use of cycles or GANs. Although promising, this approach suffers from several drawbacks including costly inference and an optimization variable for every training example preventing the method from using large training sets. We present an alternative approach which is able to achieve non-adversarial mapping using a novel form of Variational Auto-Encoder. Our method is much faster at inference time, is able to leverage large datasets and has a simple interpretation.
Written by
Research Topics
November 19, 2020
Angela Fan, Aleksandra Piktus, Antoine Bordes, Fabio Petroni, Guillaume Wenzek, Marzieh Saeidi, Sebastian Riedel, Andreas Vlachos
November 19, 2020
November 09, 2020
Angela Fan
November 09, 2020
October 26, 2020
Xian Li, Asa Cooper Stickland, Xiang Kong, Yuqing Tang
October 26, 2020
October 25, 2020
Yossef Mordechay Adi, Bhiksha Raj, Felix Kreuk, Joseph Keshet, Rita Singh
October 25, 2020
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
April 30, 2018
Yaniv Taigman, Lior Wolf, Adam Polyak, Eliya Nachmani
April 30, 2018
July 11, 2018
Eliya Nachmani, Adam Polyak, Yaniv Taigman, Lior Wolf
July 11, 2018
Foundational models
Latest news
Foundational models