CORE MACHINE LEARNING

Neural Fixed-Point Acceleration

July 09, 2021

Abstract

Fixed-point iterations are at the heart of numerical computing and are often a computational bottleneck in real-time applications, which typically instead need a fast solution of moderate accuracy. Classical acceleration methods for fixed-point problems focus on designing algorithms with theoretical guarantees that apply to any fixed-point problem. We present neural fixed-point acceleration, a framework to automatically learn to accelerate convex fixed-point problems that are drawn from a distribution, using ideas from meta-learning and classical acceleration algorithms. We apply our framework to SCS, the state-of-the-art solver for convex cone programming, and design models and loss functions to overcome the challenges of learning over unrolled optimization and acceleration instabilities. Our work brings neural acceleration into any optimization problem expressible with CVXPY.

Download the Paper

AUTHORS

Written by

Shobha Venkataraman

Brandon Amos

Publisher

NeurIPS AutoML Workshop

Research Topics

Core Machine Learning

Related Publications

August 12, 2024

CORE MACHINE LEARNING

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Arman Zharmagambetov, Yuandong Tian, Aaron Ferber, Bistra Dilkina, Taoan Huang

August 12, 2024

August 09, 2024

CORE MACHINE LEARNING

Benchmarking Attacks on Learning with Errors

Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter

August 09, 2024

August 02, 2024

CORE MACHINE LEARNING

GenCO: Generating Diverse Designs with Combinatorial Constraints

Arman Zharmagambetov, Yuandong Tian

August 02, 2024

July 29, 2024

COMPUTER VISION

CORE MACHINE LEARNING

Factorizing Text-to-Video Generation by Explicit Image Conditioning

Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Saketh Rambhatla, Mian Akbar Shah, Xi Yin, Devi Parikh, Ishan Misra

July 29, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.