CORE MACHINE LEARNING

Neural Fixed-Point Acceleration

July 09, 2021

Abstract

Fixed-point iterations are at the heart of numerical computing and are often a computational bottleneck in real-time applications, which typically instead need a fast solution of moderate accuracy. Classical acceleration methods for fixed-point problems focus on designing algorithms with theoretical guarantees that apply to any fixed-point problem. We present neural fixed-point acceleration, a framework to automatically learn to accelerate convex fixed-point problems that are drawn from a distribution, using ideas from meta-learning and classical acceleration algorithms. We apply our framework to SCS, the state-of-the-art solver for convex cone programming, and design models and loss functions to overcome the challenges of learning over unrolled optimization and acceleration instabilities. Our work brings neural acceleration into any optimization problem expressible with CVXPY.

Download the Paper

AUTHORS

Written by

Shobha Venkataraman

Brandon Amos

Publisher

NeurIPS AutoML Workshop

Research Topics

Core Machine Learning

Related Publications

May 07, 2024

CORE MACHINE LEARNING

ReTaSA: A Nonparametric Functional Estimation Approach for Addressing Continuous Target Shift

Hwanwoo Kim, Xin Zhang, Jiwei Zhao, Qinglong Tian

May 07, 2024

April 04, 2024

CORE MACHINE LEARNING

DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning

Jonathan Lebensold, Maziar Sanjabi, Pietro Astolfi, Adriana Romero Soriano, Kamalika Chaudhuri, Mike Rabbat, Chuan Guo

April 04, 2024

March 28, 2024

THEORY

CORE MACHINE LEARNING

On the Identifiability of Quantized Factors

Vitoria Barin Pacela, Kartik Ahuja, Simon Lacoste-Julien, Pascal Vincent

March 28, 2024

March 13, 2024

CORE MACHINE LEARNING

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, Yuandong Tian

March 13, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.