December 06, 2020
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces such as torque, joint angle, or end-effector position. This forces the agent to make decision at each point in training, and hence, limit the scalability to continuous, high-dimensional, and long-horizon tasks. In contrast, research in classical robotics has, for a long time, exploited dynamical systems as a policy representation to learn robot behaviors via demonstrations. These techniques, however, lack the flexibility and generalizability provided by deep learning or deep reinforcement learning and have remained under-explored in such settings. In this work, we begin to close this gap and embed dynamics structure into deep neural network-based policies by reparameterizing action spaces with differential equations. We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space as opposed to prior policy learning methods where action represents the raw control space. The embedded structure allow us to perform end-to-end policy learning under both reinforcement and imitation learning setups. We show that NDPs achieve better or comparable performance to state-of-the-art approaches on many robotic control tasks using both reward-based training and demonstrations. Project video and code are available at: https://shikharbahl.github.io/ neural-dynamic-policies/
Written by
Deepak Pathak
Abhinav Gupta
Mustafa Mukadam
Shikhar Bahl
Publisher
NeurIPS
Research Topics
October 13, 2025
Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu
October 13, 2025
September 24, 2025
Dulhan Jayalath, Shashwat Goel, Thomas Simon Foster, Parag Jain, Suchin Gururangan, Cheng Zhang, Anirudh Goyal, Alan Schelten
September 24, 2025
September 08, 2025
Rohit Patel
September 08, 2025
September 02, 2025
Tianjian Li, Yiming Zhang, Ping Yu, Swarnadeep Saha, Daniel Khashabi, Jason Weston, Jack Lanchantin, Tianlu Wang
September 02, 2025

Our approach
Latest news
Foundational models