October 21, 2020
Our goal is to answer queries over facts stored in a text memory. The key challenge in NeuralDBs(Thorne et al., 2020), compared to open-book NLP such as question answering (Rajpurkar et al., 2016,inter alia), is that possibly thousands of facts must be aggregated to provide a single answer, without direct supervision. The challenges represented in NeuralDBs are important for both the NLP and database communities alike: discrete reasoning over text (Dua et al., 2019), retriever-based QA(Dunn et al., 2017) and multi-hop QA (Welbl et al.,2018; Yang et al., 2018) are common components.
Written by
James Thorne
Alon Halevy
Majid Yazdani
Marzieh Saeidi
Sebastian Riedel
Publisher
WeCNLP
Research Topics
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
April 17, 2025
Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier
April 17, 2025
April 14, 2025
Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu
April 14, 2025
April 04, 2025
Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar
April 04, 2025
Foundational models
Our approach
Latest news
Foundational models