RESEARCH

COMPUTER VISION

Neural Basis Models for Interpretability

November 06, 2022

Abstract

Due to the widespread use of complex machine learning models in real-world applications, it is becoming critical to explain model predictions. However, these models are typically black-box deep neural networks, explained post-hoc via methods with known faithfulness limitations. Generalized Additive Models (GAMs) are an inherently interpretable class of models that address this limitation by learning a non-linear shape function for each feature separately, followed by a linear model on top. However, these models are typically difficult to train, require numerous parameters, and are difficult to scale. We propose an entirely new subfamily of GAMs that utilizes basis decomposition of shape functions. A small number of basis functions are shared among all features, and are learned jointly for a given task, thus making our model scale much better to large-scale data with high-dimensional features, especially when features are sparse. We propose an architecture denoted as the Neural Basis Model (NBM) which uses a single neural network to learn these bases. On a variety of tabular and image datasets, we demonstrate that for interpretable machine learning, NBMs are the state-of-the-art in accuracy, model size, and, throughput and can easily model all higher-order feature interactions. Source code is available at \href{https://github.com/facebookresearch/nbm-spam}{\ttfamily github.com/facebookresearch/nbm-spam}.

Download the Paper

AUTHORS

Publisher

NeurIPS

Research Topics

Computer Vision

Core Machine Learning

Related Publications

February 13, 2024

GRAPHICS

COMPUTER VISION

IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni, Filippos Kokkinos

February 13, 2024

January 25, 2024

COMPUTER VISION

LRR: Language-Driven Resamplable Continuous Representation against Adversarial Tracking Attacks

Felix Xu, Di Lin, Jianjun Zhao, Jianlang Chen, Lei Ma, Qing Guo, Wei Feng, Xuhong Ren

January 25, 2024

November 10, 2023

COMPUTER VISION

EgoDistill: Egocentric Head Motion Distillation for Efficient Video Understanding

Shuhan Tan, Tushar Nagarajan, Kristen Grauman

November 10, 2023

October 29, 2023

COMPUTER VISION

ALA: Naturalness-aware Adversarial Lightness Attack

Felix Xu, Geguang Pu, Jiayi Zhu, Jincao Feng, Liangru Sun, Qing Guo, Yang Liu, Yihao Huang

October 29, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.