RESEARCH

COMPUTER VISION

Neural Basis Models for Interpretability

November 06, 2022

Abstract

Due to the widespread use of complex machine learning models in real-world applications, it is becoming critical to explain model predictions. However, these models are typically black-box deep neural networks, explained post-hoc via methods with known faithfulness limitations. Generalized Additive Models (GAMs) are an inherently interpretable class of models that address this limitation by learning a non-linear shape function for each feature separately, followed by a linear model on top. However, these models are typically difficult to train, require numerous parameters, and are difficult to scale. We propose an entirely new subfamily of GAMs that utilizes basis decomposition of shape functions. A small number of basis functions are shared among all features, and are learned jointly for a given task, thus making our model scale much better to large-scale data with high-dimensional features, especially when features are sparse. We propose an architecture denoted as the Neural Basis Model (NBM) which uses a single neural network to learn these bases. On a variety of tabular and image datasets, we demonstrate that for interpretable machine learning, NBMs are the state-of-the-art in accuracy, model size, and, throughput and can easily model all higher-order feature interactions. Source code is available at \href{https://github.com/facebookresearch/nbm-spam}{\ttfamily github.com/facebookresearch/nbm-spam}.

Download the Paper

AUTHORS

Publisher

NeurIPS

Research Topics

Computer Vision

Core Machine Learning

Related Publications

June 17, 2024

COMPUTER VISION

Move Anything with Layered Scene Diffusion

Jiawei Ren, Frost Xu, Jerry Wu, Ziwei Liu, Tao Xiang, Antoine Toisoul

June 17, 2024

June 14, 2024

COMPUTER VISION

Decomposed evaluations of geographic disparities in text-to-image models

Abhishek Sureddy, Dishant Padalia, Nandhinee Periyakaruppa, Oindrila Saha, Adina Williams, Adriana Romero Soriano, Megan Richards, Polina Kirichenko, Melissa Hall

June 14, 2024

June 05, 2024

COMPUTER VISION

Cache Me if You Can: Accelerating Diffusion Models through Block Caching

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Ji Hou, Zijian He, Artsiom Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cramers, Peter Vajda, Jialiang Wang

June 05, 2024

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.