RESEARCH

COMPUTER VISION

NAM - Unsupervised Cross-Domain Image Mapping without Cycles or GANs

May 02, 2018

Abstract

Several methods were recently proposed for Unsupervised Domain Mapping, which is the task of translating images between domains without prior knowledge of correspondences. Current approaches suffer from an instability in training due to relying on GANs which are powerful but highly sensitive to hyper-parameters and suffer from mode collapse. In addition, most methods rely heavily on ``cycle'' relationships between the domains, which enforce a one-to-one mapping. In this work, we introduce an alternative method: NAM. NAM relies on a pre-trained generative model of the source domain, and aligns each target image with an image sampled from the source distribution while jointly optimizing the domain mapping function. Experiments are presented validating the effectiveness of our method.

Download the Paper

AUTHORS

Written by

Yedid Hoshen

Lior Wolf

Publisher

ICLR Workshop

Research Topics

Computer Vision

Related Publications

June 17, 2024

COMPUTER VISION

Move Anything with Layered Scene Diffusion

Jiawei Ren, Frost Xu, Jerry Wu, Ziwei Liu, Tao Xiang, Antoine Toisoul

June 17, 2024

June 14, 2024

COMPUTER VISION

Decomposed evaluations of geographic disparities in text-to-image models

Abhishek Sureddy, Dishant Padalia, Nandhinee Periyakaruppa, Oindrila Saha, Adina Williams, Adriana Romero Soriano, Megan Richards, Polina Kirichenko, Melissa Hall

June 14, 2024

June 05, 2024

COMPUTER VISION

Cache Me if You Can: Accelerating Diffusion Models through Block Caching

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Ji Hou, Zijian He, Artsiom Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cramers, Peter Vajda, Jialiang Wang

June 05, 2024

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.