August 11, 2024
Research in toxicity detection in natural language processing for the speech modality (audio-based) is quite limited, particularly for languages other than English. To address these limitations and lay the groundwork for truly multilingual audio-based toxicity detection, we introduce MuTox, the first highly multilingual audio-based dataset with toxicity labels which covers 14 different linguistic families. The dataset comprises 20,000 audio utterances for English and Spanish, and 4,000 for the other 28 languages. To demonstrate the quality of this dataset, we trained the MuTox audio-based toxicity classifier, which enables zero-shot toxicity detection across a wide range of languages. This classifier performs on par with existing text-based trainable classifiers, while expanding the language coverage more than tenfold. When compared to a wordlist-based classifier that covers a similar number of languages, Mu- Tox improves F1-Score by an average of 100%. This significant improvement underscores the potential of MuTox in advancing the field of audio-based toxicity detection.
Written by
Marta R. Costa-jussa
Mariano Coria Meglioli
Pierre Andrews
David Dale
Kae Hansanti
Elahe Kalbassi
Christophe Ropers
Carleigh Wood
Publisher
ACL
Research Topics
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
April 04, 2025
Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar
April 04, 2025
March 13, 2025
Delong Chen, Samuel Cahyawijaya, Jianfeng Liu, Baoyuan Wang, Pascale Fung
March 13, 2025
February 07, 2025
The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates
February 07, 2025
Foundational models
Our approach
Latest news
Foundational models