August 11, 2024
Research in toxicity detection in natural language processing for the speech modality (audio-based) is quite limited, particularly for languages other than English. To address these limitations and lay the groundwork for truly multilingual audio-based toxicity detection, we introduce MuTox, the first highly multilingual audio-based dataset with toxicity labels which covers 14 different linguistic families. The dataset comprises 20,000 audio utterances for English and Spanish, and 4,000 for the other 28 languages. To demonstrate the quality of this dataset, we trained the MuTox audio-based toxicity classifier, which enables zero-shot toxicity detection across a wide range of languages. This classifier performs on par with existing text-based trainable classifiers, while expanding the language coverage more than tenfold. When compared to a wordlist-based classifier that covers a similar number of languages, Mu- Tox improves F1-Score by an average of 100%. This significant improvement underscores the potential of MuTox in advancing the field of audio-based toxicity detection.
Written by
Marta R. Costa-jussa
Mariano Coria Meglioli
Pierre Andrews
David Dale
Kae Hansanti
Elahe Kalbassi
Christophe Ropers
Carleigh Wood
Publisher
ACL
Research Topics
September 05, 2024
Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma
September 05, 2024
August 20, 2024
Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar
August 20, 2024
August 11, 2024
Igor Tufanov, Karen Hambardzumyan, Javier Ferrando, Lena Voita
August 11, 2024
August 10, 2024
August 10, 2024
Foundational models
Latest news
Foundational models