June 15, 2023
Entity Linking is one of the most common Natural Language Processing tasks in practical applications, but so far efficient end-to-end solutions with multilingual coverage have been lacking, leading to complex model stacks. To fill this gap, we release and open source BELA, the first fully end-to-end multilingual entity linking model that efficiently detects and links entities in texts in any of 97 languages. We provide here a detailed description of the model and report BELA’s performance on four entity linking datasets covering high- and lowresource languages.
Written by
Mike Plekhanov
Nora Kassner
Kashyap Popat
Louis Martin
Simone Merello
Borislav Kozlovskii
Frederic Dreyer
Publisher
https://arxiv.org/
Research Topics
February 07, 2025
The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates
February 07, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
January 04, 2025
January 04, 2025
Foundational models
Our approach
Latest news
Foundational models