SPEECH & AUDIO

NLP

Multi-task Learning for Front-end Text Processing in TTS

April 14, 2024

Abstract

We propose a multi-task learning (MTL) model for jointly performing three tasks that are commonly solved in a text-to-speech (TTS) front-end: text normalization (TN), part-of-speech (POS) tagging, and homograph disambiguation (HD). Our framework utilizes a tree-like structure with a trunk that learns shared representations, followed by separate task-specific heads. We further incorporate a pre-trained language model to utilize its built-in lexical and contextual knowledge, and study how to best use its embeddings so as to most effectively benefit our multi-task model. Through task-wise ablations, we show that our full model trained on all three tasks achieves the strongest overall performance compared to models trained on individual or sub-combinations of tasks, confirming the advantages of our MTL framework. Finally, we introduce a new HD dataset containing a balanced number of sentences in diverse contexts for a variety of homographs and their pronunciations. We demonstrate that incorporating this dataset into training significantly improves HD performance over only using a commonly used, but imbalanced, pre-existing dataset.

Download the Paper

AUTHORS

Written by

Yun Wang (Speech)

Arthur Hinsvark

Qing He

Shun Zhang

Wonjune Kang

Publisher

ICASSP

Related Publications

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

April 04, 2025

NLP

CORE MACHINE LEARNING

Multi-Token Attention

Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar

April 04, 2025

March 25, 2025

INTEGRITY

SPEECH & AUDIO

Targeted Data Poisoning for Black-Box Audio Datasets Ownership Verification

Wassim (Wes) Bouaziz, El Mahdi El Mhamdi, Nicolas Usunier

March 25, 2025

March 17, 2025

RESEARCH

NLP

reWordBench: Benchmarking and Improving the Robustness of Reward Models with Transformed Inputs

Zhaofeng Wu, Michihiro Yasunaga, Andrew Cohen, Yoon Kim, Asli Celikyilmaz, Marjan Ghazvininejad

March 17, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.