June 13, 2019
Identifying the temporal segments in a video that contain content relevant to a category or task is a difficult but interesting problem. This has applications in fine-grained video indexing and retrieval. Part of the difficulty in this problem comes from the lack of supervision since large-scale annotation of localized segments containing the content of interest is very expensive. In this paper, we propose to use the category assigned to an entire video as weak supervision to our model. Using such weak supervision, our model learns to do joint video level categorization and localization of content relevant to the category of the video. This can be thought of as providing both a classification label and an explanation in the form of the relevant regions of the video. Extensive experiments on a large scale dataset show our model can achieve good localization performance without any direct supervision and can combine signals from multiple modalities like speech and vision.
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 06, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 06, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Our approach
Latest news
Foundational models