SPEECH & AUDIO

NLP

Multi-Head State Space Model for Speech Recognition

August 14, 2023

Abstract

State space models (SSMs) have recently shown promising results on small-scale sequence and language modelling tasks, rivalling and outperforming many attention-based approaches. In this paper, we propose a multi-head state space (MH-SSM) architecture equipped with special gating mechanisms, where parallel heads are taught to learn local and global temporal dynamics on sequence data. As a drop-in replacement for multi-head attention in transformer encoders, this new model significantly outperforms the transformer transducer on the LibriSpeech speech recognition corpus. Furthermore, we augment the transformer block with MH-SSMs layers, referred to as the Stateformer, achieving state-of-the-art performance on the LibriSpeech task, with word error rates of 1.76%/4.37% on the development and 1.91%/4.36% on the test sets without using an external language model.

Download the Paper

AUTHORS

Written by

Yassir Fathullah

Chunyang Wu

Yuan Shangguan (June)

Junteng Jia

Wenhan Xiong

Jay Mahadeokar

Chunxi Liu

Yangyang Shi

Mark Gales

Ozlem Kalinli

Publisher

Interspeech

Related Publications

June 25, 2024

NLP

Neurons in Large Language Models: Dead, N-gram, Positional

Elena Voita, Javier Ferrando Monsonis, Christoforos Nalmpantis

June 25, 2024

June 25, 2024

SPEECH & AUDIO

NLP

Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation

Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee

June 25, 2024

June 14, 2024

NLP

How to Train Your DRAGON: Diverse Augmentation Towards Generalizable Dense Retrieval

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Scott Yih, Xilun Chen

June 14, 2024

June 14, 2024

NLP

SYSTEMS RESEARCH

LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai, Nas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen, Carole-Jean Wu

June 14, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.