Research

Computer Vision

Multi-Fiber Networks for Video Recognition

September 9, 2018

Abstract

In this paper, we aim to reduce the computational cost of spatio-temporal deep neural networks, making them run as fast as their 2D counterparts while preserving state-of-the-art accuracy on video recognition benchmarks. To this end, we present the novel Multi-Fiber architecture that slices a complex neural network into an ensemble of lightweight networks or fibers that run through the network. To facilitate information flow between fibers we further incorporate multiplexer modules and end up with an architecture that reduces the computational cost of 3D networks by an order of magnitude, while increasing recognition performance at the same time. Extensive experimental results show that our multi-fiber architecture significantly boosts the efficiency of existing convolution networks for both image and video recognition tasks, achieving state-of-the-art performance on UCF-101, HMDB-51 and Kinetics datasets. Our proposed model requires over 9× and 13× less computations than the I3D [1] and R(2+1)D [2] models, respectively, yet providing higher accuracy.

Download the Paper

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.