REINFORCEMENT LEARNING

Multi-Agent Diagnostics for Robustness via Illuminated Diversity

April 30, 2024

Abstract

In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which "masters" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.

Download the Paper

AUTHORS

Written by

Mikayel Samvelyan

Minqi Jiang

Davide Paglieri

Jack Parker-Holder

Tim Rocktäschel

Publisher

AAMAS 2024

Research Topics

Reinforcement Learning

Related Publications

July 01, 2024

REINFORCEMENT LEARNING

Behaviour Distillation

Andrei Lupu, Chris Lu, Robert Lange, Jakob Foerster

July 01, 2024

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

April 02, 2024

ROBOTICS

REINFORCEMENT LEARNING

MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation

Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, Vikash Kumar

April 02, 2024

March 26, 2024

ROBOTICS

REINFORCEMENT LEARNING

When should we prefer Decision Transformers for Offline Reinforcement Learning?

Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, Amy Zhang

March 26, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.