Research

NLP

MuDoCo: Corpus for Multidomain Coreference Resolution and Referring Expression Generation

May 15, 2020

Abstract

This paper proposes a new dataset, MuDoCo, composed of authored dialogs between a fictional user and a system who are given tasks to perform within six task domains. These dialogs are given rich linguistic annotations by expert linguists for several types of reference mentions and named entity mentions, either of which can span multiple words, as well as for coreference links between mentions. The dialogs sometimes cross and blend domains, and the users exhibit complex task switching behavior such as re-initiating a previous task in the dialog by referencing the entities within it. The dataset contains a total of 8,429 dialogs with an average of 5.36 turns per dialog. We are releasing this dataset to encourage research in the field of coreference resolution, referring expression generation and identification within realistic, deep dialogs involving multiple domains. To demonstrate its utility, we also propose two baseline models for the downstream tasks: coreference resolution and referring expression generation.

Download the Paper

AUTHORS

Written by

Scott Martin

Shivani Poddar

Kartikeya Upasani

Publisher

Language Resources and Evaluation Conference (LREC)

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.