May 15, 2020
This paper proposes a new dataset, MuDoCo, composed of authored dialogs between a fictional user and a system who are given tasks to perform within six task domains. These dialogs are given rich linguistic annotations by expert linguists for several types of reference mentions and named entity mentions, either of which can span multiple words, as well as for coreference links between mentions. The dialogs sometimes cross and blend domains, and the users exhibit complex task switching behavior such as re-initiating a previous task in the dialog by referencing the entities within it. The dataset contains a total of 8,429 dialogs with an average of 5.36 turns per dialog. We are releasing this dataset to encourage research in the field of coreference resolution, referring expression generation and identification within realistic, deep dialogs involving multiple domains. To demonstrate its utility, we also propose two baseline models for the downstream tasks: coreference resolution and referring expression generation.
Written by
Scott Martin
Shivani Poddar
Kartikeya Upasani
Publisher
Language Resources and Evaluation Conference (LREC)
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Latest news
Foundational models