June 08, 2019
Mixture models trained via EM are among the simplest, most widely used and well understood latent variable models in the machine learning literature. Surprisingly, these models have been hardly explored in text generation applications such as machine translation. In principle, they provide a latent variable to control generation and produce a diverse set of hypotheses. In practice, however, mixture models are prone to degeneracies - often only one component gets trained or the latent variable is simply ignored. We find that disabling dropout noise in responsibility computation is critical to successful training. In addition, the design choices of parameterization, prior distribution, hard versus soft EM and online versus offline assignment can dramatically affect model performance. We develop an evaluation protocol to assess both quality and diversity of generations against multiple references, and provide an extensive empirical study of several mixture model variants. Our analysis shows that certain types of mixture models are more robust and offer the best trade-off between translation quality and diversity compared to variational models and diverse decoding approaches.
Publisher
ICML
March 13, 2025
Delong Chen, Samuel Cahyawijaya, Jianfeng Liu, Baoyuan Wang, Pascale Fung
March 13, 2025
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 07, 2025
The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates
February 07, 2025
February 07, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 07, 2025
Foundational models
Our approach
Latest news
Foundational models