Research

NLP

MixKD: Towards Efficient Distillation of Large-scale Language Models

March 17, 2021

Abstract

Large-scale language models have recently demonstrated impressive empirical performance. Nevertheless, the improved results are attained at the price of bigger models, more power consumption, and slower inference, which hinder their applicability to low-resource (both memory and computation) platforms. Knowledge distillation (KD) has been demonstrated as an effective framework for compressing such big models. However, large-scale neural network systems are prone to memorize training instances, and thus tend to make inconsistent predictions when the data distribution is altered slightly. Moreover, the student model has few opportunities to request useful information from the teacher model when there is limited task-specific data available. To address these issues, we propose MixKD, a data-agnostic distillation framework that leverages mixup, a simple yet efficient data augmentation approach, to endow the resulting model with stronger generalization ability. Concretely, in addition to the original training examples, the student model is encouraged to mimic the teacher's behavior on the linear interpolation of example pairs as well. We prove from a theoretical perspective that under reasonable conditions MixKD gives rise to a smaller gap between the generalization error and the empirical error. To verify its effectiveness, we conduct experiments on the GLUE benchmark, where MixKD consistently leads to significant gains over the standard KD training, and outperforms several competitive baselines. Experiments under a limited-data setting and ablation studies further demonstrate the advantages of the proposed approach.

Download the Paper

AUTHORS

Written by

Kevin J Liang

Weituo Hao

Dinghan Shen

Yufan Zhou

Weizhu Chen

Changyou Chen

Lawrence Carin

Publisher

ICLR 2021

Related Publications

April 17, 2025

Human & Machine Intelligence

Conversational AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

March 17, 2025

NLP

reWordBench: Benchmarking and Improving the Robustness of Reward Models with Transformed Inputs

Zhaofeng Wu, Michihiro Yasunaga, Andrew Cohen, Yoon Kim, Asli Celikyilmaz, Marjan Ghazvininejad

March 17, 2025

February 06, 2025

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

December 02, 2018

NLP

Computer Vision

One-Shot Unsupervised Cross Domain Translation | Facebook AI Research

Sagie Benaim, Lior Wolf

December 02, 2018

June 30, 2019

NLP

Variational Training for Large-Scale Noisy-OR Bayesian Networks | Facebook AI Research

Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth

June 30, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.