January 25, 2024
A widely recognized difficulty in federated learning arises from the statistical heterogeneity among clients: local datasets often originate from distinct yet not entirely unrelated probability distributions, and personalization is, therefore, necessary to achieve optimal results from each individual’s perspective. In this paper, we show how the excess risks of personalized federated learning using a smooth, strongly convex loss depend on data heterogeneity from a minimax point of view, with a focus on the FedAvg algorithm (McMahan et al., 2017) and pure local training (i.e., clients solve empirical risk minimization problems on their local datasets without any communication). Our main result reveals an approximate alternative between these two baseline algorithms for federated learning: the former algorithm is minimax rate optimal over a collection of instances when data heterogeneity is small, whereas the latter is minimax rate optimal when data heterogeneity is large, and the threshold is sharp up to a constant. As an implication, our results show that from a worst-case point of view, a dichotomous strategy that makes a choice between the two baseline algorithms is rate-optimal. Another implication is that the popular FedAvg following by local finetuning strategy is also minimax optimal under additional regularity conditions. Our analysis relies on a new notion of algorithmic stability that takes into account the nature of federated learning.
Publisher
Journal of Machine Learning Research
Research Topics
Core Machine Learning
January 02, 2025
Shukai Duan, Heng Ping, Nikos Kanakaris, Xiongye Xiao, Panagiotis Kyriakis, Nesreen K. Ahmed, Peiyu Zhang, Guixiang Ma, Mihai Capota, Shahin Nazarian, Theodore L. Willke, Paul Bogdan
January 02, 2025
December 18, 2024
Haider Al-Tahan, Quentin Garrido, Randall Balestriero, Diane Bouchacourt, Caner Hazirbas, Mark Ibrahim
December 18, 2024
December 12, 2024
December 12, 2024
December 12, 2024
Mubashara Akhtar, Omar Benjelloun, Costanza Conforti, Luca Foschini, Pieter Gijsbers, Joan Giner-Miguelez, Sujata Goswami, Nitisha Jain, Michalis Karamousadakis, Satyapriya Krishna, Michael Kuchnik, Sylvain Lesage, Quentin Lhoest, Pierre Marcenac, Manil Maskey, Peter Mattson, Luis Oala, Hamidah Oderinwale, Pierre Ruyssen, Tim Santos, Rajat Shinde, Elena Simperl, Arjun Suresh, Goeffry Thomas, Slava Tykhonov, Joaquin Vanschoren, Susheel Varma, Jos van der Velde, Steffen Vogler, Carole-Jean Wu, Luyao Zhang
December 12, 2024
Foundational models
Latest news
Foundational models