CORE MACHINE LEARNING

Meta Optimal Transport

July 20, 2023

Abstract

We study the use of amortized optimization to predict optimal transport (OT) maps from the input measures, which we call Meta OT. This helps repeatedly solve similar OT problems between different measures by leveraging the knowledge and information present from past problems to rapidly predict and solve new problems. Otherwise, standard methods ignore the knowledge of the past solutions and suboptimally re-solve each problem from scratch. We instantiate Meta OT models in discrete and continuous settings between grayscale images, spherical data, classification labels, and color palettes and use them to improve the computational time of standard OT solvers.

Download the Paper

AUTHORS

Written by

Brandon Amos

Giulia Luise

Ievgen Redko

Samuel Cohen

Publisher

ICML

Research Topics

Core Machine Learning

Related Publications

July 08, 2024

THEORY

CORE MACHINE LEARNING

An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes

Antonio Orvieto, Lin Xiao

July 08, 2024

June 17, 2024

HUMAN & MACHINE INTELLIGENCE

COMPUTER VISION

D-Flow: Differentiating through Flows for Controlled Generation

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, Yaron Lipman

June 17, 2024

June 17, 2024

COMPUTER VISION

CORE MACHINE LEARNING

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Neta Shaul, Uriel Singer, Ricky Chen, Matt Le, Ali Thabet, Albert Pumarola, Yaron Lipman

June 17, 2024

June 14, 2024

CORE MACHINE LEARNING

Differentially Private Representation Learning via Image Captioning

Tom Sander, Yaodong Yu, Maziar Sanjabi, Alain Durmus, Yi Ma, Kamalika Chaudhuri, Chuan Guo

June 14, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.