RESEARCH

Meta-learning in Stochastic Linear Bandits

November 03, 2020

Abstract

We investigate meta-learning procedures in the setting of stochastic linear bandits tasks. The goal is to select a learning algorithm which works well on average over a class of bandits tasks, that are sampled from a task-distribution. Inspired by recent work on learning-to-learn linear regression, we consider a class of bandit algorithms that implement a regularized version of the wellknown OFUL algorithm, where the regularization is a square euclidean distance to a bias vector. We first study the benefit of the biased OFUL algorithm in terms of regret minimization. We then propose two strategies to estimate the bias within the learning-to-learn setting. We show both theoretically and experimentally, that when the number of tasks grows and the variance of the task-distribution is small, our strategies have a significant advantage over learning the tasks in isolation.

Download the Paper

AUTHORS

Written by

Alessandro Lazaric

Leonardo Cella

Massimiliano Pontil

Publisher

ICML

Related Publications

November 28, 2022

RESEARCH

CORE MACHINE LEARNING

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 28, 2022

November 27, 2022

RESEARCH

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

RESEARCH

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

RESEARCH

COMPUTER VISION

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.