THEORY

CORE MACHINE LEARNING

Meta-Learning in Games

May 01, 2023

Abstract

In the literature on game-theoretic equilibrium finding, focus has mainly been on solving a single game in isolation. In practice, however, strategic interactions—ranging from routing problems to online advertising auctions—evolve dynamically, thereby leading to many similar games to be solved. To address this gap, we introduce meta-learning for equilibrium finding and learning to play games. We establish the first meta-learning guarantees for a variety of fundamental and well-studied games, including two-player zero-sum games, general-sum games, Stackelberg games, and multiple extensions thereof. In particular, we obtain rates of convergence to different game-theoretic equilibria that depend on natural notions of similarity between the sequence of games encountered, while at the same time recovering the known single-game guarantees when the sequence of games is arbitrary. Along the way, we prove a number of new results in the single-game regime through a simple and unified framework, which may be of independent interest. Finally, we evaluate our meta-learning algorithms on endgames faced by the poker agent Libratus against top human professionals. The experiments show that games with varying stack sizes can be solved significantly faster using our meta-learning techniques than by solving them separately, often by an order of magnitude.

Download the Paper

AUTHORS

Written by

Keegan Harris

Ioannis Anagnostides

Gabriele Farina

Mikhail Khodak

Zhiwei Steven Wu

Tuomas Sandholm

Maria-Florina Balcan

Publisher

ICLR

Research Topics

Theory

Core Machine Learning

Related Publications

August 12, 2024

CORE MACHINE LEARNING

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Arman Zharmagambetov, Yuandong Tian, Aaron Ferber, Bistra Dilkina, Taoan Huang

August 12, 2024

August 09, 2024

CORE MACHINE LEARNING

Benchmarking Attacks on Learning with Errors

Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter

August 09, 2024

August 02, 2024

CORE MACHINE LEARNING

GenCO: Generating Diverse Designs with Combinatorial Constraints

Arman Zharmagambetov, Yuandong Tian

August 02, 2024

July 29, 2024

COMPUTER VISION

CORE MACHINE LEARNING

Factorizing Text-to-Video Generation by Explicit Image Conditioning

Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Saketh Rambhatla, Mian Akbar Shah, Xi Yin, Devi Parikh, Ishan Misra

July 29, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.