GRAPHICS

COMPUTER VISION

Meta 3D TextureGen: Fast and Consistent Texture Generation for 3D Objects

July 02, 2024

Abstract

The recent availability and adaptability of text-to-image models has sparked a new era in many related domains that benefit from the learned text priors as well as high-quality and fast generation capabilities, one of which is texture generation for 3D objects. Although recent texture generation methods achieve impressive results by using text-to-image networks, the combination of global consistency, quality, and speed, which is crucial for advancing texture generation to real-world applications, remains elusive. To that end, we introduce Meta 3D TextureGen: a new feedforward method comprised of two sequential networks aimed at generating high-quality and globally consistent textures for arbitrary geometries of any complexity degree in less than 20 seconds. Our method achieves state-of-the-art results in quality and speed by conditioning a text-to-image model on 3D semantics in 2D space and fusing them into a complete and high-resolution UV texture map, as demonstrated by extensive qualitative and quantitative evaluations. In addition, we introduce a texture enhancement network that is capable of up-scaling any texture by an arbitrary ratio, producing 4k pixel resolution textures.

Download the Paper

AUTHORS

Written by

Raphael Bensadoun

Yanir Kleiman

Idan Azuri

Omri Harosh

Andrea Vedaldi

Natalia Neverova

Oran Gafni

Publisher

arXiv

Research Topics

Graphics

Computer Vision

Related Publications

December 12, 2024

COMPUTER VISION

EvalGIM: A Library for Evaluating Generative Image Models

Melissa Hall, Oscar MaƱas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi, Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, Adriana Romero Soriano

December 12, 2024

December 11, 2024

COMPUTER VISION

Video Seal: Open and Efficient Video Watermarking

Pierre Fernandez, Hady Elsahar, Zeki Yalniz, Alexandre Mourachko

December 11, 2024

December 11, 2024

NLP

COMPUTER VISION

Meta CLIP 1.2

Hu Xu, Bernie Huang, Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Scott Yih, Philippe Brunet, Kim Hazelwood, Ramya Raghavendra, Daniel Li (FAIR), Saining Xie, Christoph Feichtenhofer

December 11, 2024

December 11, 2024

COMPUTER VISION

Measuring Deja Vu Memorization Efficiently

Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri

December 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.