November 5, 2019
We demonstrate a conversational system which engages the user through a multi-modal, multi-turn dialog over the user’s memories. The system can perform QA over memories by responding to user queries to recall specific attributes and associated media (e.g. photos) of past episodic memories. The system can also make proactive suggestions to surface related events or facts from past memories to make conversations more engaging and natural. To implement such a system, we collect a new corpus of memory grounded conversations, which comprises human-to-human role-playing dialogs given synthetic memory graphs with simulated attributes. Our proof-of-concept system operates on these synthetic memory graphs, however it can be trained and applied to real-world user memory data (e.g. photo albums, etc.) We present the architecture of the proposed conversational system, and example queries that the system supports.
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
October 31, 2022
Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel
October 31, 2022
December 06, 2020
Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang
December 06, 2020
November 30, 2020
Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee
November 30, 2020
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Foundational models
Latest news
Foundational models