Research

NLP

Memorize or generalize? Searching for a compositional RNN in a haystack

January 30, 2019

Abstract

Neural networks are very powerful learning systems, but they do not readily generalize from one task to the other. This is partly due to the fact that they do not learn in a compositional way, that is, by discovering skills that are shared by different tasks, and recombining them to solve new problems. In this paper, we explore the compositional generalization capabilities of recurrent neural networks (RNNs). We first propose the lookup table composition domain as a simple setup to test compositional behaviour and show that it is theoretically possible for a standard RNN to learn to behave compositionally in this domain when trained with standard gradient descent and provided with additional supervision. We then remove this additional supervision and perform a search over a large number of model initializations to investigate the proportion of RNNs that can still converge to a compositional solution. We discover that a small but non-negligible proportion of RNNs do reach partial compositional solutions even without special architectural constraints. This suggests that a combination of gradient descent and evolutionary strategies directly favouring the minority models that developed more compositional approaches might suffice to lead standard RNNs towards compositional solutions.

Download the Paper

Related Publications

February 06, 2025

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

October 31, 2022

NLP

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel

October 31, 2022

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

December 02, 2018

NLP

Computer Vision

One-Shot Unsupervised Cross Domain Translation | Facebook AI Research

Sagie Benaim, Lior Wolf

December 02, 2018

June 30, 2019

NLP

Variational Training for Large-Scale Noisy-OR Bayesian Networks | Facebook AI Research

Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth

June 30, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.