COMPUTER VISION

Measuring Deja Vu Memorization Efficiently

December 11, 2024

Abstract

Recent research has shown that representation learning models may accidentally memorize their training data. For example, the déjà vu method shows that for certain representation learning models and training images, it is sometimes possible to correctly predict the foreground label given only the representation of the background – better than through dataset-level correlations. However, their measurement method requires training two models – one to estimate dataset-level correlations and the other to estimate memorization. This multiple model setup becomes infeasible for large open-source models. In this work, we propose alter- native simple methods to estimate dataset-level correlations, and show that these can be used to approximate an off-the-shelf model’s memorization ability without any retraining. This enables, for the first time, the measurement of memorization in pre-trained open-source image representation and vision-language models. Our results show that different ways of measuring memorization yield very similar aggregate results. We also find that open-source models typically have lower aggregate memorization than similar models trained on a subset of the data. The code is available both for vision and vision language models.

Download the Paper

AUTHORS

Written by

Narine Kokhlikyan

Bargav Jayaraman

Florian Bordes

Chuan Guo

Kamalika Chaudhuri

Publisher

NeurIPS

Research Topics

Computer Vision

Related Publications

June 11, 2025

ROBOTICS

COMPUTER VISION

CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models

Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, Justine T. Kao

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

June 11, 2025

ROBOTICS

RESEARCH

V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.