November 23, 2015
This paper introduces an environment for simple 2D maze games, designed as a sandbox for machine learning approaches to reasoning and planning. Within it, we create 10 simple games based on algorithmic tasks (e.g. embodying simple if-then statements). We deploy a range of neural models (fully connected, convolutional network, memory network) on these games, with and without a procedurally generated curriculum. We show that these architectures can be trained with reinforcement to respectable performance on these tasks, but are still far from optimal, despite their simplicity. We also apply these models to games involving combat, including StarCraft, demonstrating their ability to learn non-trivial tactics which enable them to consistently beat the in-game AI.
Publisher
Research Topics
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
October 31, 2022
Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel
October 31, 2022
December 06, 2020
Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang
December 06, 2020
November 30, 2020
Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee
November 30, 2020
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Foundational models
Latest news
Foundational models