RESEARCH

NLP

Mask-Predict: Parallel Decoding of Conditional Masked Language Models

November 02, 2019

Abstract

Most machine translation systems generate text autoregressively from left to right. We, instead, use a masked language modeling objective to train a model to predict any subset of the target words, conditioned on both the input text and a partially masked target translation. This approach allows for efficient iterative decoding, where we first predict all of the target words non-autoregressively, and then repeatedly mask out and regenerate the subset of words that the model is least confident about. By applying this strategy for a constant number of iterations, our model improves state-of-the-art performance levels for non-autoregressive and parallel decoding translation models by over 4 BLEU on average. It is also able to reach within about 1 BLEU point of a typical left-to-right transformer model, while decoding significantly faster.

Download the Paper

AUTHORS

Written by

Marjan Ghazvininejad

Luke Zettlemoyer

Omer Levy

Yinhan Liu

Publisher

EMNLP

Related Publications

February 21, 2024

INTEGRITY

NLP

Watermarking Makes Language Models Radioactive

Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, Teddy Furon

February 21, 2024

December 07, 2023

CONVERSATIONAL AI

NLP

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Davide Testuggine, Madian Khabsa

December 07, 2023

December 06, 2023

NLP

Polar Ducks and Where to Find Them: Enhancing Entity Linking with Duck Typing and Polar Box Embeddings

Mattia Atzeni, Mike Plekhanov, Frederic Dreyer, Nora Kassner, Simone Merello, Louis Martin, Nicola Cancedda

December 06, 2023

December 04, 2023

NLP

PATHFINDER: Guided Search over Multi-Step Reasoning Paths

Olga Golovneva, Sean O'Brien, Ram Pasunuru, Tianlu Wang, Luke Zettlemoyer, Maryam Fazel-Zarandi, Asli Celikyilmaz

December 04, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.