July 18, 2021
Black-box variational inference algorithms use stochastic sampling to analyze diverse statistical models, like those expressed in probabilistic programming languages, without model-specific derivations. While the popular score-function estimator computes unbiased gradient estimates, its variance is often unacceptably large, especially in models with discrete latent variables. We propose a stochastic natural gradient estimator that is as broadly applicable and unbiased, but improves efficiency by exploiting the curvature of the variational bound, and provably reduces variance by marginalizing discrete latent variables. Our marginalized stochastic natural gradients have intriguing connections to classic coordinate ascent variational inference, but allow parallel updates of variational parameters, and provide superior convergence guarantees relative to naive Monte Carlo approximations. We integrate our method with the probabilistic programming language Pyro and evaluate real-world models of documents, images, networks, and crowd-sourcing. Compared to score-function estimators, we require far fewer Monte Carlo samples and consistently convergence orders of magnitude faster.
See supplementary material here.
Publisher
ICML 2021
Research Topics
Core Machine Learning
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 08, 2022
Ari Morcos, Shashank Shekhar, Surya Ganguli, Ben Sorscher, Robert Geirhos
November 08, 2022
August 08, 2022
Ashkan Yousefpour, Akash Bharadwaj, Alex Sablayrolles, Graham Cormode, Igor Shilov, Ilya Mironov, Jessica Zhao, John Nguyen, Karthik Prasad, Mani Malek, Sayan Ghosh
August 08, 2022
December 07, 2020
Avishek Joey Bose, Gauthier Gidel, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton
December 07, 2020
November 03, 2020
Rui Zhang, Hanghang Tong Yinglong Xia, Yada Zhu
November 03, 2020
Foundational models
Latest news
Foundational models