Research

Computer Vision

Mapping the world population one building at a time

December 15, 2017

Abstract

High resolution datasets of population density which accurately map sparsely-distributed human populations do not exist at a global scale. Typically, population data is obtained using censuses and statistical modeling. More recently, methods using remotely-sensed data have emerged, capable of effectively identifying urbanized areas. Obtaining high accuracy in estimation of population distribution in rural areas remains a very challenging task due to the simultaneous requirements of sufficient sensitivity and resolution to detect very sparse populations through remote sensing as well as reliable performance at a global scale. Here, we present a computer vision method based on machine learning to create population maps from satellite imagery at a global scale, with a spatial sensitivity corresponding to individual buildings and suitable for global deployment. By combining this settlement data with census data, we create population maps with ∼ 30 meter resolution for 18 countries. We validate our method, and find that the building identification has an average precision and recall of 0.95 and 0.91, respectively and that the population estimates have a standard error of a factor ∼ 2 or less. Based on our data, we analyze 29 percent of the world population, and show that 99 percent lives within 36 km of the nearest urban cluster. The resulting high-resolution population datasets have applications in infrastructure planning, vaccination campaign planning, disaster response efforts and risk analysis such as high accuracy flood risk analysis.

Download the Paper

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.