NLP

Many-Speakers Single Channel Speech Separation with Optimal Permutation Training

August 29, 2021

Abstract

Single channel speech separation has experienced great progress in the last few years. However, training neural speech separation for a large number of speakers (e.g., more than 10 speakers) is out of reach for the current methods, which rely on the Permutation Invariant Training (PIT). In this work, we present a permutation invariant training that employs the Hungarian algorithm in order to train with an $O(C^3)$ time complexity, where $C$ is the number of speakers, in comparison to $O(C!)$ of PIT based methods. Furthermore, we present a modified architecture that can handle the increased number of speakers. Our approach separates up to $20$ speakers and improves the previous results for large $C$ by a wide margin.

Download the Paper

AUTHORS

Written by

Shaked Dovrat

Eliya Nachmani

Lior Wolf

Publisher

Interspeech 2021

Related Publications

February 06, 2025

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

October 31, 2022

NLP

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel

October 31, 2022

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

December 02, 2018

NLP

Computer Vision

One-Shot Unsupervised Cross Domain Translation | Facebook AI Research

Sagie Benaim, Lior Wolf

December 02, 2018

June 30, 2019

NLP

Variational Training for Large-Scale Noisy-OR Bayesian Networks | Facebook AI Research

Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth

June 30, 2019

June 26, 2020

NLP

Computer Vision

ShadowSync: Performing Synchronization in the Background for Highly Scalable Distributed Training

Qinqing Zheng, Bor-Yiing Su, Jiyan Yang, Alisson Azzolini, Qiang Wu, Ou Jin, Shri Karandikar, Hagay Lupesko, Liang Xiong, Eric Zhou

June 26, 2020

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.