August 29, 2021
Single channel speech separation has experienced great progress in the last few years. However, training neural speech separation for a large number of speakers (e.g., more than 10 speakers) is out of reach for the current methods, which rely on the Permutation Invariant Training (PIT). In this work, we present a permutation invariant training that employs the Hungarian algorithm in order to train with an $O(C^3)$ time complexity, where $C$ is the number of speakers, in comparison to $O(C!)$ of PIT based methods. Furthermore, we present a modified architecture that can handle the increased number of speakers. Our approach separates up to $20$ speakers and improves the previous results for large $C$ by a wide margin.
Publisher
Interspeech 2021
Research Topics
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
October 31, 2022
Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel
October 31, 2022
December 06, 2020
Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang
December 06, 2020
November 30, 2020
Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee
November 30, 2020
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Foundational models
Latest news
Foundational models