REINFORCEMENT LEARNING

MADE: Exploration via Maximizing Deviation from Explored Regions

November 01, 2021

Abstract

In online reinforcement learning (RL), efficient exploration remains particularly challenging in high-dimensional environments with sparse rewards. In low-dimensional environments, where tabular parameterization is possible, count-based upper confidence bound (UCB) exploration methods achieve minimax near-optimal rates. However, it remains unclear how to efficiently implement UCB in realistic RL tasks that involve nonlinear function approximation. To address this, we propose a new exploration approach via maximizing the deviation of the occupancy of the next policy from the explored regions. We add this term as an adaptive regularizer to the standard RL objective to trade off between exploration and exploitation. We pair the new objective with a provably convergent algorithm, giving rise to a new intrinsic reward that adjusts existing bonuses. The proposed intrinsic reward is easy to implement and combine with other existing RL algorithms to conduct exploration. As a proof of concept, we evaluate the new intrinsic reward on tabular examples across a variety of model-based and model-free algorithms, showing improvements over count-only exploration strategies. When tested on navigation and locomotion tasks from MiniGrid and DeepMind Control Suite benchmarks, our approach significantly improves sample efficiency over state-of-the-art methods.

Download the Paper

AUTHORS

Written by

Tianjun Zhang

Paria Rashidinejad

Jiantao Jiao

Yuandong Tian

Joseph E Gonzalez

Stuart Russell

Publisher

NeurIPS

Research Topics

Reinforcement Learning

Related Publications

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

April 30, 2024

REINFORCEMENT LEARNING

Multi-Agent Diagnostics for Robustness via Illuminated Diversity

Mikayel Samvelyan, Minqi Jiang, Davide Paglieri, Jack Parker-Holder, Tim Rocktäschel

April 30, 2024

April 02, 2024

ROBOTICS

REINFORCEMENT LEARNING

MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation

Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, Vikash Kumar

April 02, 2024

March 26, 2024

ROBOTICS

REINFORCEMENT LEARNING

When should we prefer Decision Transformers for Offline Reinforcement Learning?

Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, Amy Zhang

March 26, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.