NLP

Luna: Linear Unified Nested Attention

October 26, 2021

Abstract

The quadratic computational and memory complexities of the Transformer’s at-tention mechanism have limited its scalability for modeling long sequences. Inthis paper, we propose Luna, a linear unified nested attention mechanism thatapproximates softmax attention withtwo nested linear attention functions, yieldingonly linear (as opposed to quadratic) time and space complexity. As compared toa more traditional attention mechanism, Luna introduces an additional sequencewith a fixed length as input and an additional corresponding output, which allowsLuna to perform attention operation linearly, while also storing adequate contextualinformation. We perform extensive evaluations on three benchmarks of sequencemodeling tasks: long-context sequence modeling, neural machine translation andmasked language modeling for large-scale pretraining. Competitive or even betterexperimental results demonstrate both the effectiveness and efficiency of Lunacompared to a variety of strong baseline methods including the full-rank attentionand other efficient sparse and dense attention methods. The implementation of ourmodel is available at https://github.com/XuezheMax/fairseq-apollo

Download the Paper

AUTHORS

Written by

Xuezhe Ma

Xiang Kong

Sinong Wang

Chunting Zhou

Jonathan May

Hao Ma

Luke Zettlemoyer

Publisher

NeurIPS

Related Publications

June 25, 2024

NLP

Neurons in Large Language Models: Dead, N-gram, Positional

Elena Voita, Javier Ferrando Monsonis, Christoforos Nalmpantis

June 25, 2024

June 25, 2024

SPEECH & AUDIO

NLP

Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation

Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee

June 25, 2024

June 14, 2024

NLP

How to Train Your DRAGON: Diverse Augmentation Towards Generalizable Dense Retrieval

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Scott Yih, Xilun Chen

June 14, 2024

June 14, 2024

NLP

SYSTEMS RESEARCH

LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai, Nas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen, Carole-Jean Wu

June 14, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.