October 26, 2021
The quadratic computational and memory complexities of the Transformer’s at-tention mechanism have limited its scalability for modeling long sequences. Inthis paper, we propose Luna, a linear unified nested attention mechanism thatapproximates softmax attention withtwo nested linear attention functions, yieldingonly linear (as opposed to quadratic) time and space complexity. As compared toa more traditional attention mechanism, Luna introduces an additional sequencewith a fixed length as input and an additional corresponding output, which allowsLuna to perform attention operation linearly, while also storing adequate contextualinformation. We perform extensive evaluations on three benchmarks of sequencemodeling tasks: long-context sequence modeling, neural machine translation andmasked language modeling for large-scale pretraining. Competitive or even betterexperimental results demonstrate both the effectiveness and efficiency of Lunacompared to a variety of strong baseline methods including the full-rank attentionand other efficient sparse and dense attention methods. The implementation of ourmodel is available at https://github.com/XuezheMax/fairseq-apollo
Publisher
NeurIPS
Research Topics
February 07, 2025
The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates
February 07, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
January 04, 2025
January 04, 2025
Foundational models
Our approach
Latest news
Foundational models