October 22, 2017
Low-shot visual learning—the ability to recognize novel object categories from very few examples—is a hallmark of human visual intelligence. Existing machine learning approaches fail to generalize in the same way. To make progress on this foundational problem, we present a lowshot learning benchmark on complex images that mimics challenges faced by recognition systems in the wild. We then propose (1) representation regularization techniques, and (2) techniques to hallucinate additional training examples for data-starved classes. Together, our methods improve the effectiveness of convolutional networks in low-shot learning, improving the one-shot accuracy on novel classes by 2.3× on the challenging ImageNet dataset.
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 06, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 06, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Our approach
Latest news
Foundational models