RESEARCH

Lookahead converges to stationary points of smooth non-convex functions

February 25, 2020

Abstract

The Lookahead optimizer (Zhang et al., 2019) was recently proposed and demonstrated to improve performance of stochastic first-order methods for training deep neural networks. Lookahead can be viewed as a two time-scale algorithm, where the fast dynamics (inner optimizer) determine a search direction and the slow dynamics (outer optimizer) perform updates by moving along this direction. We prove that, with appropriate choice of step-sizes, Lookahead converges to a stationary point of smooth non-convex functions. Although Lookahead is described and implemented as a serial algorithm, our analysis is based on viewing Lookahead as a multi-agent optimization method with two agents communicating periodically.

AUTHORS

Written by

Mike Rabbat

Jianyu Wang

Nicolas Ballas

Vinayak Tantia

Publisher

ICASSP

Related Publications

November 28, 2022

RESEARCH

CORE MACHINE LEARNING

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 28, 2022

November 27, 2022

RESEARCH

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

RESEARCH

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

RESEARCH

COMPUTER VISION

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.