CONVERSATIONAL AI

NLP

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

December 07, 2023

Abstract

We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases. Our model incorporates a safety risk taxonomy, a valuable tool for categorizing a specific set of safety risks found in LLM prompts (i.e., prompt classification). This taxonomy is also instrumental in classifying the responses generated by LLMs to these prompts, a process we refer to as response classification. For the purpose of both prompt and response classification, we have meticulously gathered a dataset of high quality. Llama Guard, a Llama2-7b model that is instruction-tuned on our collected dataset, albeit low in volume, demonstrates strong performance on existing benchmarks such as the OpenAI Moderation Evaluation dataset and ToxicChat, where its performance matches or exceeds that of currently available content moderation tools. Llama Guard functions as a language model, carrying out multi-class classification and generating binary decision scores. Furthermore, the instruction fine-tuning of Llama Guard allows for the customization of tasks and the adaptation of output formats. This feature enhances the model's capabilities, such as enabling the adjustment of taxonomy categories to align with specific use cases, and facilitating zero-shot or few-shot prompting with diverse taxonomies at the input. We are making Llama Guard model weights available and we encourage researchers to further develop and adapt them to meet the evolving needs of the community for AI safety.

Download the Paper

Related Publications

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

April 04, 2025

NLP

CORE MACHINE LEARNING

Multi-Token Attention

Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar

April 04, 2025

March 13, 2025

NLP

COMPUTER VISION

Subobject-level Image Tokenization

Delong Chen, Samuel Cahyawijaya, Jianfeng Liu, Baoyuan Wang, Pascale Fung

March 13, 2025

February 07, 2025

NLP

BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation

The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates

February 07, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.