CONVERSATIONAL AI

NLP

Llama 2: Open Foundation and Fine-Tuned Chat Models

July 18, 2023

Abstract

In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closedsource models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.

Download the Paper

AUTHORS

Written by

Hugo Touvron

Louis Martin

Kevin Stone

Peter Albert

Amjad Almahairi

Yasmine Babaei

Nikolay Bashlykov

Soumya Batra

Praj Bhargava

Shruti Bhosale

Dan Bikel

Lukas Blecher

Cristian Canton Ferrer

Moya Chen

Guillem Cucurull

David Esiobu

Jude Fernandes

Jeremy Fu

Wenyin Fu

Brian Fuller

Cynthia Gao

Vedanuj Goswami

Naman Goyal

Anthony Hartshorn

Saghar Hosseini

Rui Hou

Hakan Inan

Marcin Kardas

Viktor Kerkez

Madian Khabsa

Isabel Kloumann

Artem Korenev

Punit Singh Koura

Marie-Anne Lachaux

Thibaut Lavril

Jenya Lee

Diana Liskovich

Yinghai Lu

Yuning Mao

Xavier Martinet

Todor Mihaylov

Pushkar Mishra

Igor Molybog

Yixin Nie

Andrew Poulton

Jeremy Reizenstein

Rashi Rungta

Kalyan Saladi

Alan Schelten

Ruan Silva

Eric Michael Smith

Ranjan Subramanian

Xiaoqing Ellen Tan

Binh Tang

Ross Taylor

Adina Williams

Andrew Kuan

Puxin Xu

Zheng Yan

Iliyan Zarov

Yuchen Zhang

Angela Fan

Melanie Kambadur

Sharan Narang

Aurelien Rodriguez

Robert Stojnic

Sergey Edunov

Thomas Scialom

Publisher

arxiv

Related Publications

November 20, 2024

CONVERSATIONAL AI

COMPUTER VISION

Llama Guard 3 Vision: Safeguarding Human-AI Image Understanding Conversations

Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti

November 20, 2024

November 20, 2024

NLP

CORE MACHINE LEARNING

Llama Guard 3-1B-INT4: Compact and Efficient Safeguard for Human-AI Conversations

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra

November 20, 2024

November 19, 2024

NLP

Adaptive Decoding via Latent Preference Optimization

Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin

November 19, 2024

November 14, 2024

NLP

CORE MACHINE LEARNING

A Survey on Deep Learning for Theorem Proving

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si

November 14, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.