May 01, 2020
In the face of the video data deluge, today’s expensive clip-level classifiers are increasingly impractical. We propose a framework for efficient action recognition in untrimmed video that uses audio as a preview mechanism to eliminate both short-term and long-term visual redundancies. First, we devise an IMGAUD2VID framework that hallucinates clip-level features by distilling from lighter modalities—a single frame and its accompanying audio— reducing short-term temporal redundancy for efficient clip-level recognition. Second, building on IMGAUD2VID, we further propose IMGAUD-SKIMMING, an attention-based long short-term memory network that iteratively selects useful moments in untrimmed videos, reducing long-term temporal redundancy for efficient video-level recognition. Extensive experiments on four action recognition datasets demonstrate that our method achieves the state-of-the-art in terms of both recognition accuracy and speed.
Publisher
CVPR
Research Topics
November 20, 2024
Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti
November 20, 2024
November 11, 2024
Sherry Xue, Romy Luo, Changan Chen, Kristen Grauman
November 11, 2024
October 31, 2024
Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra
October 31, 2024
October 16, 2024
Movie Gen Team
October 16, 2024
Foundational models
Latest news
Foundational models