June 16, 2020
We present a lightweight solution to recover 3D pose from multi-view images captured with spatially calibrated cameras. Building upon recent advances in interpretable representation learning, we exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points. This allows us to reason effectively about 3D pose across different views without using compute-intensive volumetric grids. Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections, that can be simply lifted to 3D via a differentiable Direct Linear Transform (DLT) layer. In order to do it efficiently, we propose a novel implementation of DLT that is orders of magnitude faster on GPU architectures than standard SVD-based triangulation methods. We evaluate our approach on two large-scale human pose datasets (H36M and Total Capture): our method outperforms or performs comparably to the state-of-the-art volumetric methods, while, unlike them, yielding real-time performance.
Written by
Edoardo Remelli
Shangchen Han
Sina Honari
Pascal Fua
Robert Wang
Publisher
Conference on Computer Vision and Pattern Recognition (CVPR)
Research Topics
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
November 06, 2022
Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan
November 06, 2022
October 25, 2022
Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi
October 25, 2022
October 22, 2022
Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang
October 22, 2022
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Foundational models
Latest news
Foundational models