June 16, 2019
Anticipating actions before they are executed is crucial for a wide range of practical applications including autonomous driving and robotics. While most prior work in this area requires partial observation of executed actions, in the paper we focus on anticipating actions seconds before they start. Our proposed approach is the fusion of a purely anticipatory model with a complementary model constrained to reason about the present. In particular, the latter predicts present action and scene attributes, and reasons about how they evolve over time. By doing so, we aim at modeling action anticipation at a more conceptual level than directly predicting future actions. Our model outperforms previously reported methods on the EPIC-KITCHENS and Breakfast datasets.
Publisher
Research Topics
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
November 06, 2022
Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan
November 06, 2022
October 25, 2022
Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi
October 25, 2022
October 22, 2022
Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang
October 22, 2022
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Foundational models
Latest news
Foundational models