RESEARCH

SPEECH & AUDIO

Learning Word Vectors for 157 Languages

March 23, 2019

Abstract

Distributed word representations, or word vectors, have recently been applied to many tasks in natural language processing, leading to state-of-the-art performance. A key ingredient to the successful application of these representations is to train them on very large corpora, and use these pre-trained models in downstream tasks. In this paper, we describe how we trained such high quality word representations for 157 languages. We used two sources of data to train these models: the free online encyclopedia Wikipedia and data from the common crawl project. We also introduce three new word analogy datasets to evaluate these word vectors, for French, Hindi and Polish. Finally, we evaluate our pre-trained word vectors on 10 languages for which evaluation datasets exists, showing very strong performance compared to previous models.

Download the Paper

AUTHORS

Written by

Edouard Grave

Armand Joulin

Piotr Bojanowski

Tomas Mikolov

Prakhar Gupta

Publisher

LREC

Related Publications

April 14, 2024

SPEECH & AUDIO

NLP

CoLLD: Contrastive Layer-to-Layer Distillation for Compressing Multilingual Pre-Trained Speech Encoders

Heng-Jui Chang, Ning Dong (AI), Ruslan Mavlyutov, Sravya Popuri, Andy Chung

April 14, 2024

December 11, 2023

SPEECH & AUDIO

Audiobox: Unified Audio Generation with Natural Language Prompts

Wei-Ning Hsu, Akinniyi Akinyemi, Alice Rakotoarison, Andros Tjandra, Apoorv Vyas, Baishan Guo, Bapi Akula, Bowen Shi, Brian Ellis, Ivan Cruz, Jeff Wang, Jiemin Zhang, Mary Williamson, Matt Le, Rashel Moritz, Robbie Adkins, William Ngan, Xinyue Zhang, Yael Yungster, Yi-Chiao Wu

December 11, 2023

November 30, 2023

SPEECH & AUDIO

NLP

Efficient Monotonic Multihead Attention

Xutai Ma, Anna Sun, Siqi Ouyang, Hirofumi Inaguma, Paden Tomasello

November 30, 2023

November 30, 2023

SPEECH & AUDIO

NLP

Seamless: Multilingual Expressive and Streaming Speech Translation

Seamless Communication, Loïc Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Duppenthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoffman, Min-Jae Hwang, Hirofumi Inaguma, Christopher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht, Jean Maillard, Ruslan Mavlyutov, Alice Rakotoarison, Kaushik Ram Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang, Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom Kozhevnikov, Gabriel Mejia Gonzalez, Robin San Roman, Christophe Touret, Corinne Wong, Carleigh Wood, Bokai Yu, Pierre Andrews, Can Balioglu, Peng-Jen Chen, Marta R. Costa-jussà, Maha Elbayad, Hongyu Gong, Francisco Guzmán, Kevin Heffernan, Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alexandre Mourachko, Benjamin Peloquin, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang, Mary Williamson

November 30, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.