RESEARCH

SPEECH & AUDIO

LEARNING TO DETECT DYSARTHRIA FROM RAW SPEECH

May 10, 2019

Abstract

Speech classifiers of paralinguistic traits traditionally learn from diverse hand-crafted low-level features, by selecting the relevant information for the task at hand. We explore an alternative to this selection, by learning jointly the classifier, and the feature extraction. Recent work on speech recognition has shown improved performance over speech features by learning from the waveform. We extend this approach to paralinguistic classification and propose a neural network that can learn a filterbank, a normalization factor and a compression power from the raw speech, jointly with the rest of the architecture. We apply this model to dysarthria detection from sentence-level audio recordings. Starting from a strong attention-based baseline on which mel-filterbanks outperform standard low-level descriptors, we show that learning the filters or the normalization and compression improves over fixed features by 10% absolute accuracy. We also observe a gain over OpenSmile features by learning jointly the feature extraction, the normalization, and the compression factor with the architecture. This constitutes a first attempt at learning jointly all these operations from raw audio for a speech classification task.

Download the Paper

AUTHORS

Written by

Neil Zeghidour

Juliette Millet

Publisher

ICASSP

Related Publications

April 14, 2024

SPEECH & AUDIO

NLP

CoLLD: Contrastive Layer-to-Layer Distillation for Compressing Multilingual Pre-Trained Speech Encoders

Heng-Jui Chang, Ning Dong (AI), Ruslan Mavlyutov, Sravya Popuri, Andy Chung

April 14, 2024

December 11, 2023

SPEECH & AUDIO

Audiobox: Unified Audio Generation with Natural Language Prompts

Wei-Ning Hsu, Akinniyi Akinyemi, Alice Rakotoarison, Andros Tjandra, Apoorv Vyas, Baishan Guo, Bapi Akula, Bowen Shi, Brian Ellis, Ivan Cruz, Jeff Wang, Jiemin Zhang, Mary Williamson, Matt Le, Rashel Moritz, Robbie Adkins, William Ngan, Xinyue Zhang, Yael Yungster, Yi-Chiao Wu

December 11, 2023

November 30, 2023

SPEECH & AUDIO

NLP

Efficient Monotonic Multihead Attention

Xutai Ma, Anna Sun, Siqi Ouyang, Hirofumi Inaguma, Paden Tomasello

November 30, 2023

November 30, 2023

SPEECH & AUDIO

NLP

Seamless: Multilingual Expressive and Streaming Speech Translation

Seamless Communication, Loïc Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Duppenthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoffman, Min-Jae Hwang, Hirofumi Inaguma, Christopher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht, Jean Maillard, Ruslan Mavlyutov, Alice Rakotoarison, Kaushik Ram Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang, Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom Kozhevnikov, Gabriel Mejia Gonzalez, Robin San Roman, Christophe Touret, Corinne Wong, Carleigh Wood, Bokai Yu, Pierre Andrews, Can Balioglu, Peng-Jen Chen, Marta R. Costa-jussà, Maha Elbayad, Hongyu Gong, Francisco Guzmán, Kevin Heffernan, Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alexandre Mourachko, Benjamin Peloquin, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang, Mary Williamson

November 30, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.