RANKING AND RECOMMENDATIONS

REINFORCEMENT LEARNING

Learning to bid and rank together in recommendation systems

January 06, 2024

Abstract

Many Internet applications adopt real-time bidding mechanisms to ensure different services (types of content) are shown to the users through fair competitions. The service offering the highest bid price gets the content slot to present a list of items in its candidate pool. Through user interactions with the recommended items, the service obtains the desired engagement activities. We propose a contextual-bandit framework to jointly optimize the price to bid for the slot and the order to rank its candidates for a given service in this type of recommendation systems. Our method can take as input any feature that describes the user and the candidates, including the outputs of other machine learning models. We train reinforcement learning policies using deep neural networks, and compute top-K Gaussian propensity scores to exclude the variance in the gradients caused by randomness unrelated to the reward. This setup further facilitates us to automatically find accurate reward functions that trade off between budget spending and user engagements. In online A/B experiments on two major services of Facebook Home Feed, Groups You Should Join and Friend Requests, our method statistically significantly boosted the number of groups joined by 14.7%, the number of friend requests accepted by 7.0%, and the number of daily active Facebook users by about 1 million, against strong hand-tuned baselines that have been iterated in production over years.

Download the Paper

AUTHORS

Written by

Geng Ji

Wentao Jiang

Jiang Li

Fahmid Morshed Fahid

Zhengxing Chen

Yinghua Li

Jun Xiao

Chongxi Bao

Zheqing (Bill) Zhu

Publisher

Machine Learning

Research Topics

Ranking & Recommendations

Reinforcement Learning

Core Machine Learning

Related Publications

July 01, 2024

REINFORCEMENT LEARNING

Behaviour Distillation

Andrei Lupu, Chris Lu, Robert Lange, Jakob Foerster

July 01, 2024

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

April 30, 2024

REINFORCEMENT LEARNING

Multi-Agent Diagnostics for Robustness via Illuminated Diversity

Mikayel Samvelyan, Minqi Jiang, Davide Paglieri, Jack Parker-Holder, Tim Rocktäschel

April 30, 2024

April 02, 2024

ROBOTICS

REINFORCEMENT LEARNING

MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation

Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, Vikash Kumar

April 02, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.